Probabilistic Method and Random Graphs

Lecture 9. De-randomization and Second Moment Method
Xingwu Liu

Institute of Computing Technology, Chinese
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1The slides are mainly based on Chapter 6 of Probability and Computing.



Comments, questions, or suggestions?



A Review of Lecture 8

* Principle of probabilistic method

"~ Nonzero
A—
‘ - of satisfying the - -

property

e Counting: Tournament, Ramsey number
* First moment method: Max-3SAT, MIS
— Expectation argument: Pr(X = E[X]) > 0,Pr(X < E[X]) > 0

— Markov’s inequality: Pr(X > a) < ¥

Pr(X#0)=Pr(X >0)=Pr(X =1) < E[X]
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A Review of Lecture 8

 How to find an desirable object? By sampling!
* Algorithmic paradigm
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* First moment method guarantees efficiency



* Cool to get an efficient randomized algorithm

e Can we derive a deterministic one?

* Yes, if expectation argument is used



De-randomization: an example

e MAX-3SAT: Given a 3-CNF Boolean formula,
find a truth assignment satisfying the
maximum number of clauses

—E.g:(x1Vx, V) A A(X VX3V Xy)

7 .
e Known: at least gn clauses can be satisfied

 Randomized algo. to find a good assignment
— Independently, randomly assign values

— Succeed if lucky
* Can we make good choice, rather than pray for luck?



Look closer at the randomized algorithm

* |n equivalence, choose values sequentially

* Good choices lead to a good final result

— Which choice is good?
* Easy to know with hindsight, but how to predict

— A tentative approach: always make the choice which
allows a good final result

7n . 7
* Fact: a 5 expect. means the existence of a 5-approx.

: : : 7
* Make the current choice, keeping the expectation > ?n

— Nice, but does such a choice exist? How to find it?



Conditional expectation says yes!

The first step
n
- — [E[X] =[Zv1 Pr(x; = Ul)][E[Xlxl = vl]
— There must be vy s.t. E[X|x; = v4] = %n
. . = 7
Likewise, if E[X|x; = vq, .., Xk—q = V1] = ?Tl' then

7n
E[X|x1 = vy, .., X = Vg ] = ?for some vy,
Final correctness

— XXy =V, 0, Xy = V) = E[X|xy =V, 00, Xy = V] 2

Given vy, ..., Vp_1, What’s the v, ?
o Letvys.t. E[X|x; = vq, ..., X = V] is maximized

m
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Deterministic %—algorithm for MAX-3SAT

Fork =1--mdo

xy = argmax,, E[X|x; = vy, .. xp_q = V44,
X = Vgl

Endfor

* Cool! And this approach can be generalized



De-randomization via conditional expectation

Expectation argument=deterministic algorithm

Basic idea
— Expectation argument guarantees existence

— Sequentially make deterministic choices
* Each choice maintains the expectation, given the past ones

Only valid for expectation argument where
randomness lies in a sequence of random variables

What if the expectation is hard to compute?
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Example: Turan Theorem

Any graph G = (V, E) contains an independent

% 2|E
V] ,Where D = 2IE]
D+1’ V|

set of size at least —

Expectation argument: the expected size of an

14
independent set S is at least — v

Randomly choose vertices into S one by one

Try the de-randomization routine



ldea of the algorithm (1)

Choose valid vertices sequentially

At step t 4+ 1, find u to maximize IE[Q|S(t),u]

— S®): the independent set at step ¢
— (): the size of the final independent set

Hard to compute the expectation ®
1 v

—-E[Q] = X =T

- “dw)+1  D+1

- 14
[t suffices to show IE[Q |S(t)] =T forany t



ldea of the algorithm (2)

1

Note that E[Q|SW®] = |S®| + ¥ 2 X

weR® g(w)+1 ~

— R®: set of vertices away from S® by distance >1

° X(O) 2

V]

D+1

= it’s enough if X® is non-decreasing

— Can we achieve this?
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If atstept + 1, u € RW is chosen,
xt+) _x(®) =1 _¥

B [XED —x®O] >1-Y
So, there is u s.t. X(t+1) > x(©

WETT (W) d(w)+1
1 dw)+1
weRWM gw)+1 |RO®)

(t)

Can it be non-
1 negative?

=0
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A deterministic algorithm

* |nitialize S to be the empty set

* While there is a vertexu & I'(S)

— Add to S such a vertex u which minimizes
1
Lwert () d(w)+1

e Return S




* Paul Turan (1910 -1976)
* Hungarian mathematician
* Founder of

Probabilistic number theory

Extremal graph theory
(in Nazi Camp)
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Sample

Probability
space

[ sampling ]

Nonzero
probability of
success
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Big Chromatic Number and Big Girth

Chromatic number vs local structure
— Loose local structure — small chro. number?

— No! (Erdés 1959)
One of the first applications of prob. Method

Theorem: for any integers g, k >0, there is a
graph with girth> g and chro. number= k

We just prove the special case g = 4, i.e.
triangle-free



Basic Idea of the Proof

Randomly pick a graph G from Gn,p

— x(G): the chromatic number of G
— [(G): the size of a maximum independent set of ¢

With high probability I(G) is small

—1(G)x(G) = nimplies that y(G) is big

With high probability G has few triangles
Destroy the triangles while keeping I(G) small



Proof: I(G) is small w.h.p.

* X:the number of independent sets of size %

+ Pr(1(6) = =) = Pr(X # 0) < E[X]

n/2k
= (i) 1 ="
_pn(n—_zk)
< 2"e  s8k?

e Smallifnislargeandp = w(n™1)




Proof: triangles are few w.h.p.

* 7(G): the number of triangles of G

n

3
* E[T(6)] = (})p® <2 =Z2 ifp =n~2/

* By Markov ineq., Pr (T(G) > g) < §

__pn(n—2k)

e Recall Pr (]I(G) > ) < 2"e  s8k?

pn 4 5
< eM e 16k2 = N N3/16K" i S Ak

<e M« g if n1/3 > 32k2
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Proof: modification

Pr(1(G) < -, T(6) <3) >3

— Choose G s.t. I(G) < %,T(G) < %

Remove one vertex from each triangle of G,
resulting in a graph G'withn' > n — 7(G)

/ n
I(G") < 1(G) < -
' - n' >n—T(G)>k

n
1(G" — 1(G) — % —

x(G') =



Algorithm for finding such a graph

Fix n/3 > 32k?andp = n~?/3
Sample G from G,, ,,
Destroy the triangles

Success probability > %

Do you have any idea of de-randomizing?



Second moment argument

Var|[X]
a2

e Chebyshev Ineq.: Pr(|X — E[X]| = a) <

* A special case:
Pr(X =0) < Pr(|X — E|X]| = E[X])
Var|X]|

<
— (E[X])?

— Compare with Pr(X # 0) < E[X] for integer r.v. X
* Typically works when nearly independent

— Due to the difficulty in computing the variance



An improved version by Shepp

Var[ ]
E[X2]
* Proof: (IE[X]) = (E[1x0 ‘XDZ
< E[1%0]E[X?]
= Pr(X # 0)E[X?]
= E[X?] — Pr(X = 0)E[X“]

— The inequality is due to (ffg)z <[f*[g*

2
* WhenX =>0,Pr(X>0) > {X])]

¢« Pr(iX=0) <




Generalizing Shepp’s Theorem

Pr(X > OE[X ])>(1—9)2(IE D® 6 e (0,1)

xz] 7
Paley&Zygmund, 1932
* Proof:

E[X] =E :XlXSBIE[X]] + [E[X1X>91E[X]]

1
< OE[X] + (E[X?]Pr(X > OE[X]))?
* Further improvement, tight when X is constant

(1-0)2(E[X])?
PI"(X > H]E[ ]) — Var ]_|_(1 B)Z(IE[X])Z

due to E[X — OE[X]| < E|(X — OE[X]) 1x>gE(x|]
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App.: Erdds distinct sum problem

A c R* has distinct subset sums

— different subsets have different sums

— Example: A = {2°,21, .2k}

Fix n € Z*. Consider S < [n] having distinct
subset sums. f(n) is the max size of such S

Easy lower bound: f(n) = [In,n] + 1
Erd6s promised 500S: f(n) < |In,n] + ¢

— Now offered by Ron Graham




An easy upper bound

Assume k-set S € |n] has distinct subset sums

There are 2% subset sum
Each subset sum € [nk]

So, 2% < nk

k < In,n+ln,k < In,n+|
< In,n+|
= ln,n+

S

n, (In,n+ln, k)
n,(2Iln,n)

Can it be tighter? Yes!

n,ln,n + 1



A tighter upper bound

* |ntuition underlying the proof:

— A small interval ([nk]) has many (2%) distinct sums
* |f the sums are not distributed uniformly

— Most of the sums lie in a much smaller interval

— k must be smaller
— It is the case by Chebyshev’s Inequality



Proof: f(n) = lnzn%lnzlnzn + 0(1)

* Fix a k-set S c |n] with distinct subset sums

e X:the sum of a random subset of S
— u = E[X],0% = Var[X]

* Pr(|X — ul >a0)£%:>
1——<Pr(|X—,u| < ao) =

az_

+ 2c00+1
1-— ; < Vil e PriX =) <

Since Pr(X = i) is either 0 or 2%

2019/12/16 29



Proof (continued)

* Estimating o (assume S = {a4, ..., a; }):
> aj+-+aj < n?k nk

02 = N e
4 4 2

= 1—%32%(0511@“)
zk(1—a—12)—1
avk
* This holds forany @ > 1. Leta = /3
2 2k

3v/3Vk

>n=

*n= = k < ln2n+%ln21n2n + 0(1)



References

e http://www.cse.buffalo.edu/~hungngo/classe

s/2011/Spring-694/lectures/sm.pdf

* http://www.openproblemgarden.org/

 Documentary film of Erdds: N is a Number - A
Portrait of Paul Erdds
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Thank you!



