Probabilistic Method and Random Graphs Lecture 9. De-randomization and Second Moment Method

Xingwu Liu

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 6 of Probability and Computing.

Comments, questions, or suggestions?

A Review of Lecture 8

• Principle of probabilistic method

- Counting: Tournament, Ramsey number
- First moment method: Max-3SAT, MIS
 - Expectation argument: $Pr(X \ge \mathbb{E}[X]) > 0$, $Pr(X \le \mathbb{E}[X]) > 0$
 - Markov's inequality: $Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$ $Pr(X \ne 0) = Pr(X > 0) = Pr(X \ge 1) \le \mathbb{E}[X]$

A Review of Lecture 8

- How to find an desirable object? By sampling!
- Algorithmic paradigm

• First moment method guarantees efficiency

• Cool to get an efficient randomized algorithm

• Can we derive a deterministic one?

• Yes, if expectation argument is used

De-randomization: an example

• MAX-3SAT: Given a 3-CNF Boolean formula, find a truth assignment satisfying the maximum number of clauses

 $-\operatorname{E.g.:} (x_1 \lor x_2 \lor x_3) \land \dots \land (\overline{x_1} \lor \overline{x_3} \lor x_4)$

- Known: at least $\frac{7}{8}n$ clauses can be satisfied
- Randomized algo. to find a good assignment

 Independently, randomly assign values
 - Succeed if lucky
 - Can we make good choice, rather than pray for luck?

Look closer at the randomized algorithm

- In equivalence, choose values sequentially
- Good choices lead to a good final result
 - Which choice is good?
 - Easy to know with hindsight, but how to predict
 - A tentative approach: always make the choice which allows a good final result
 - Fact: a $\frac{7n}{8}$ expect. means the existence of a $\frac{7}{8}$ -approx.
 - Make the current choice, keeping the expectation $\geq \frac{7n}{2}$
 - Nice, but does such a choice exist? How to find it?

Conditional expectation says yes!

• The first step

$$-\frac{7n}{8} = \mathbb{E}[X] = \sum_{v_1} \Pr(x_1 = v_1) \mathbb{E}[X|x_1 = v_1]$$

- There must be v_1 s.t. $\mathbb{E}[X|x_1 = v_1] \ge \frac{7n}{8}$

- Likewise, if $\mathbb{E}[X|x_1 = v_1, \dots, x_{k-1} = v_{k-1}] \ge \frac{7n}{8}$, then $\mathbb{E}[X|x_1 = v_1, \dots, x_k = v_k] \ge \frac{7n}{8}$ for some v_k
- Final correctness

$$-X(x_1 = v_1, \dots, x_m = v_m) = \mathbb{E}[X|x_1 = v_1, \dots, x_m = v_m] \ge \frac{7n}{8}$$

• Given
$$v_1, \ldots, v_{k-1}$$
, what's the v_k ?

• Let v_k s.t. $\mathbb{E}[X|x_1 = v_1, \dots, x_k = v_k]$ is maximized

Deterministic $\frac{7}{8}$ -algorithm for MAX-3SAT

For
$$k = 1 \cdots m$$
 do
 $x_k = \operatorname{argmax}_{v_k} \mathbb{E}[X|x_1 = v_1, \dots x_{k-1} = v_{k-1}, x_k = v_k]$

Endfor

• Cool! And this approach can be generalized

De-randomization via conditional expectation

- Expectation argument⇒deterministic algorithm
- Basic idea
 - Expectation argument guarantees existence
 - Sequentially make deterministic choices
 - Each choice maintains the expectation, given the past ones
- Only valid for expectation argument where randomness lies in a sequence of random variables
- What if the expectation is hard to compute?

Example: Turán Theorem

- Any graph G = (V, E) contains an independent set of size at least $\frac{|V|}{D+1}$, where $D = \frac{2|E|}{|V|}$
- Expectation argument: the expected size of an independent set S is at least $\frac{|V|}{D+1}$
- Randomly choose vertices into *S* one by one

• Try the de-randomization routine

Idea of the algorithm (1)

- Choose valid vertices sequentially
- At step t + 1, find u to maximize E[Q|S^(t), u]
 -S^(t): the independent set at step t
 -Q: the size of the final independent set
- Hard to compute the expectation \otimes

$$-\mathbb{E}[Q] \ge \sum \frac{1}{d(w)+1} \ge \frac{|V|}{D+1}$$

• It suffices to show $\mathbb{E}[Q|S^{(t)}] \ge \frac{|V|}{D+1}$ for any t

Idea of the algorithm (2)

- Note that $\mathbb{E}[Q|S^{(t)}] \ge |S^{(t)}| + \sum_{w \in R^{(t)}} \frac{1}{d(w)+1} \triangleq X^{(t)}$ - $R^{(t)}$: set of vertices away from $S^{(t)}$ by distance >1
- $X^{(0)} \ge \frac{|V|}{D+1} \Rightarrow$ it's enough if $X^{(t)}$ is non-decreasing - Can we achieve this?
- If at step t + 1, $u \in R^{(t)}$ is chosen, $X^{(t+1)} - X^{(t)} = 1 - \sum_{w \in \Gamma^+(u)} \frac{1}{d(w)+1}$ Can it be non-negative?
- $\mathbb{E}_{u}[X^{(t+1)} X^{(t)}] \ge 1 \sum_{w \in R^{(t)}} \frac{1}{d(w) + 1} \frac{d(w) + 1}{|R^{(t)}|} = 0$
- So, there is u s.t. $X^{(t+1)} \ge X^{(t)}$

A deterministic algorithm

- Initialize S to be the empty set
- While there is a vertex $u \notin \Gamma(S)$
 - Add to S such a vertex u which minimizes $\sum_{w \in \Gamma^+(u)} \frac{1}{d(w)+1}$
- Return S

- Paul Turán (1910 1976)
- Hungarian mathematician
- Founder of

Probabilistic number theory Extremal graph theory (in Nazi Camp)

Sample

Big Chromatic Number and Big Girth

- Chromatic number vs local structure
 - Loose local structure → small chro. number?
 No! (Erdős 1959)
- One of the first applications of prob. Method
- Theorem: for any integers g, k > 0, there is a graph with girth $\geq g$ and chro. number $\geq k$
- We just prove the special case g = 4, i.e. triangle-free

Basic Idea of the Proof

- Randomly pick a graph G from $G_{n,p}$
 - $-\chi(G)$: the chromatic number of G
 - $\mathbb{I}(G)$: the size of a maximum independent set of G
- With high probability $\mathbb{I}(G)$ is small $-\mathbb{I}(G)\chi(G) \ge n$ implies that $\chi(G)$ is big
- With high probability G has few triangles
- Destroy the triangles while keeping I(G) small

Proof: I(G) is small w.h.p.

- X: the number of independent sets of size $\frac{n}{2k}$
- $\Pr\left(\mathbb{I}(G) \ge \frac{n}{2k}\right) = \Pr(X \neq 0) \le \mathbb{E}[X]$ = $\binom{n}{n/2k} (1-p)^{\binom{n/2k}{2}}$ < $2^n e^{-\frac{pn(n-2k)}{8k^2}}$
- Small if n is large and $p = \omega(n^{-1})$

Proof: triangles are few w.h.p.

- $\mathcal{T}(G)$: the number of triangles of G
- $\mathbb{E}[\mathcal{T}(G)] = \binom{n}{3}p^3 < \frac{(np)^3}{6} = \frac{n}{6}$ if $p = n^{-2/3}$
- By Markov ineq., $\Pr\left(\mathcal{T}(G) > \frac{n}{2}\right) \le \frac{1}{3}$
- Recall $\Pr\left(\mathbb{I}(G) \ge \frac{n}{2k}\right) < 2^n e^{-\frac{pn(n-2k)}{8k^2}}$

$$< e^n e^{-\frac{pn^2}{16k^2}} = e^{n-n^{\frac{4}{3}}/16k^2}$$
 if $n > 4k$
 $< e^{-n} < \frac{1}{6}$ if $n^{1/3} \ge 32k^2$

Proof: modification

•
$$\Pr\left(\mathbb{I}(G) < \frac{n}{2k}, \mathcal{T}(G) \le \frac{n}{2}\right) > \frac{1}{2}$$

- Choose G s.t. $\mathbb{I}(G) < \frac{n}{2k}, \mathcal{T}(G) \le \frac{n}{2}$

• Remove one vertex from each triangle of G, resulting in a graph G' with $n' \ge n - \mathcal{T}(G)$

•
$$\mathbb{I}(G') \leq \mathbb{I}(G) < \frac{n}{2k}$$

• $\chi(G') \geq \frac{n'}{\mathbb{I}(G')} \geq \frac{n'}{\mathbb{I}(G)} \geq \frac{n - \mathcal{T}(G)}{\frac{n}{2k}} \geq k$

Algorithm for finding such a graph

- Fix $n^{1/3} \ge 32k^2$ and $p = n^{-2/3}$
- Sample G from $G_{n,p}$
- Destroy the triangles

Success probability > ¹/₂

• Do you have any idea of de-randomizing?

Second moment argument

- Chebyshev Ineq.: $\Pr(|X \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}[X]}{a^2}$
- A special case:
- $\Pr(X = 0) \le \Pr(|X \mathbb{E}[X]| \ge \mathbb{E}[X])$ $\le \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}$

- Compare with $Pr(X \neq 0) \leq \mathbb{E}[X]$ for integer r.v. X

• Typically works when nearly independent

Due to the difficulty in computing the variance

An improved version by Shepp

•
$$\Pr(X = 0) \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X^2]}$$

• Proof: $(\mathbb{E}[X])^2 = (\mathbb{E}[1_{X \neq 0} \cdot X])^2$ $\leq \mathbb{E}[1_{X \neq 0}^2] \mathbb{E}[X^2]$ $= \Pr(X \neq 0)\mathbb{E}[X^2]$ $= \mathbb{E}[X^2] - \Pr(X = 0)\mathbb{E}[X^2]$ - The inequality is due to $(\int fg)^2 \leq \int f^2 \int g^2$ • When $X \geq 0$, $\Pr(X > 0) > \frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]}$

Generalizing Shepp's Theorem

- $\Pr(X > \theta \mathbb{E}[X]) \ge (1 \theta)^2 \frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]}, \theta \in (0, 1)$
- Paley&Zygmund, 1932
- Proof:

$$\mathbb{E}[X] = \mathbb{E}[X1_{X \le \theta \mathbb{E}[X]}] + \mathbb{E}[X1_{X > \theta \mathbb{E}[X]}]$$
$$\leq \theta \mathbb{E}[X] + \left(\mathbb{E}[X^2] \Pr(X > \theta \mathbb{E}[X])\right)^{\frac{1}{2}}$$

• Further improvement, tight when X is constant $\Pr(X > \theta \mathbb{E}[X]) \ge \frac{(1-\theta)^2 (\mathbb{E}[X])^2}{\operatorname{Var}[X] + (1-\theta)^2 (\mathbb{E}[X])^2}$ due to $\mathbb{E}[X - \theta \mathbb{E}[X]] \le \mathbb{E}[(X - \theta \mathbb{E}[X]) \mathbb{1}_{X > \theta \mathbb{E}[X]}]$

App.: Erdős distinct sum problem

- $A \subset \mathbb{R}^+$ has distinct subset sums
 - different subsets have different sums
 - Example: $A = \{2^0, 2^1, \dots 2^k\}$
- Fix n ∈ Z⁺. Consider S ⊂ [n] having distinct subset sums. f(n) is the max size of such S
- Easy lower bound: $f(n) \ge \lfloor \ln_2 n \rfloor + 1$
- Erdős promised 500\$: $f(n) \le \lfloor \ln_2 n \rfloor + c$

Now offered by Ron Graham

An easy upper bound

- Assume k-set $S \subseteq [n]$ has distinct subset sums
- There are 2^k subset sums
- Each subset sum $\in [nk]$
- So, $2^k \leq nk$
- $k \leq \ln_2 n + \ln_2 k \leq \ln_2 n + \ln_2 (\ln_2 n + \ln_2 k)$ $\leq \ln_2 n + \ln_2 (2 \ln_2 n)$ $= \ln_2 n + \ln_2 \ln_2 n + 1$
- Can it be tighter? Yes!

A tighter upper bound

• Intuition underlying the proof:

- A small interval ([nk]) has many (2^k) distinct sums

- If the sums are not distributed uniformly
 - Most of the sums lie in a much smaller interval
 - -k must be smaller
 - It is the case by Chebyshev's Inequality

Proof:
$$f(n) = \ln_2 n + \frac{1}{2} \ln_2 \ln_2 n + O(1)$$

- Fix a k-set $S \subset [n]$ with distinct subset sums
- X: the sum of a random subset of S

$$-\mu = \mathbb{E}[X], \sigma^2 = Var[X]$$

• $\Pr(|X - \mu| \ge \alpha \sigma) \le \frac{1}{\alpha^2} \Rightarrow$ $1 - \frac{1}{\alpha^2} \le \Pr(|X - \mu| < \alpha \sigma) \Rightarrow$ $1 - \frac{1}{\alpha^2} \le \sum_{i=\mu-\alpha\sigma}^{\mu+\alpha\sigma} \Pr(X = i) \le \frac{2\alpha\sigma+1}{2^k}$ Since $\Pr(X = i)$ is either 0 or 2^{-k}

Proof (continued)

• Estimating σ (assume $S = \{a_1, \dots, a_k\}$):

$$\begin{split} \sigma^2 &= \frac{a_1^2 + \dots + a_k^2}{4} \leq \frac{n^2 k}{4} \Rightarrow \sigma \leq \frac{n\sqrt{k}}{2} \\ &\Rightarrow 1 - \frac{1}{\alpha^2} \leq \frac{1}{2^k} (\alpha n\sqrt{k} + 1) \\ &\Rightarrow n \geq \frac{2^k \left(1 - \frac{1}{\alpha^2}\right) - 1}{\alpha\sqrt{k}} \end{split}$$

• This holds for any $\alpha > 1$. Let $\alpha = \sqrt{3}$

•
$$n \ge \frac{2}{3\sqrt{3}} \frac{2^k}{\sqrt{k}} \Rightarrow k \le \ln_2 n + \frac{1}{2} \ln_2 \ln_2 n + O(1)$$

References

 <u>http://www.cse.buffalo.edu/~hungngo/classe</u> s/2011/Spring-694/lectures/sm.pdf

<u>http://www.openproblemgarden.org/</u>

 Documentary film of Erdős: N is a Number - A Portrait of Paul Erdős

Thank you!